

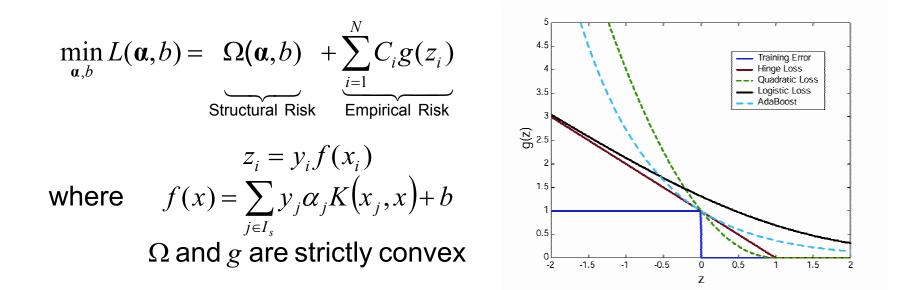
Approximate Leave-One-Out Error Estimation for Learning with Smooth, Strictly Convex Margin Loss Functions

Christopher P. Diehl Research and Technology Development Center Johns Hopkins Applied Physics Laboratory Chris.Diehl@jhuapl.edu

September 29, 2004

- General Learning Framework
- Model Selection
- LOO Error Estimation
- Unlearning and LOO Margin Estimation
- Comments on the Method
- Evaluating the Approximation
- Results
- Conclusion and Future Work

General Large Margin Learning Framework



• Class of objective functions includes

- Smoothed Support Vector Machines
- Kernel Logistic Regression

• The Goal

Identify the model that yields the best generalization performance

• The Need

An efficient means of estimating the generalization performance (error rate) using the available data

Common Approaches

- Validation Set
- K-fold Cross-Validation
- Leave-One-Out (N-fold Cross-Validation)
 - > Almost unbiased estimator of the generalization error
 - > Valuable tool when data is scarce for one or more classes

• Definition

$$e_{LOO} = \frac{1}{N} \sum_{i=1}^{N} I\{z_k^{(k)} < 0\}$$
 where $z_k^{(k)} = y_k f^{(k)}(x_k)$ and

 $f^{(k)}$ is the classifier trained on all data except (x_k, y_k)

• Approximation Strategy

Estimate $f^{(k)}$ based on f to derive an estimate of the LOO margin $z_k^{(k)}$

- Repeated Steps in LOO
 - > Unlearn the example (x_k, y_k)
 - > Compute the LOO margin $z_k^{(k)}$

• Exact Unlearning

- > Set regularization parameter $C_k = 0$ to remove example's influence
- > Update classifier parameters to minimize

$$\min_{\boldsymbol{a},b} L^{(k)}(\boldsymbol{a},b) = \Omega(\boldsymbol{a},b) + \sum_{\substack{i=1\\i\neq k}}^{N} C_i g(z_i)$$

via multiple Newton steps

• Approximate Unlearning

Compute only one Newton step to approximate the change in the classifier parameters

$$\begin{bmatrix} \Delta \boldsymbol{\alpha} \\ \Delta b \end{bmatrix} = -\left(\nabla^2_{\boldsymbol{\alpha}, b} L^{(k)} \Big|_{(\boldsymbol{\alpha}_*, b_*)} \right)^{-1} \nabla_{\boldsymbol{\alpha}, b} L^{(k)} \Big|_{(\boldsymbol{\alpha}_*, b_*)} \text{ where } (\boldsymbol{\alpha}_*, b_*) = \arg\min L(\boldsymbol{\alpha}, b)$$

Estimate of LOO margin is then

$$z_k^{(k)} \approx z_k + y_k \left(\sum_{j \in I_S} y_j \Delta \alpha_j K(x_j, x_k) + \Delta b \right)$$

$$z_{k}^{(k)} \approx z_{k} + \frac{C_{k}g'(z_{k})\hat{\mathbf{q}}_{k}^{\mathsf{T}}\mathbf{H}^{-1}\hat{\mathbf{q}}_{k}}{1 - C_{k}g''(z_{k})\hat{\mathbf{q}}_{k}^{\mathsf{T}}\mathbf{H}^{-1}\hat{\mathbf{q}}_{k}}$$

where
$$\hat{\mathbf{q}}_{k}^{\mathsf{T}} = \begin{bmatrix} y_{j}y_{k}K(x_{j}, x_{k}) \forall j \in I_{S} \cdots y_{k} \end{bmatrix}$$
$$\mathbf{H} = \nabla^{2}_{(a,b)}L\Big|_{(a_{*},b_{*})}$$

- Main Computational Expense
 - > Computing $\hat{\mathbf{q}}_k^{\mathsf{T}} \mathbf{H}^{-1} \hat{\mathbf{q}}_k$ for each example
 - Inverse Hessian available from training phase
- Margin Sensitivity
 - > Limiting form of approximation yields $\frac{\partial z_k}{\partial C_k} = -g'(z_k)\hat{\mathbf{q}}_k^{\mathsf{T}}\mathbf{H}^{-1}\hat{\mathbf{q}}_k \ge 0$
 - > Margin increases monotonically with decreasing regularization (increasing C_k)
 - > Implies $\Delta z_k \le 0$ when unlearning the example examples classified incorrectly will remain in error after unlearning

Generalizations

 Approximations can be derived for other strictly convex objective functions and cross-validation methods (e.g. K-fold crossvalidation)

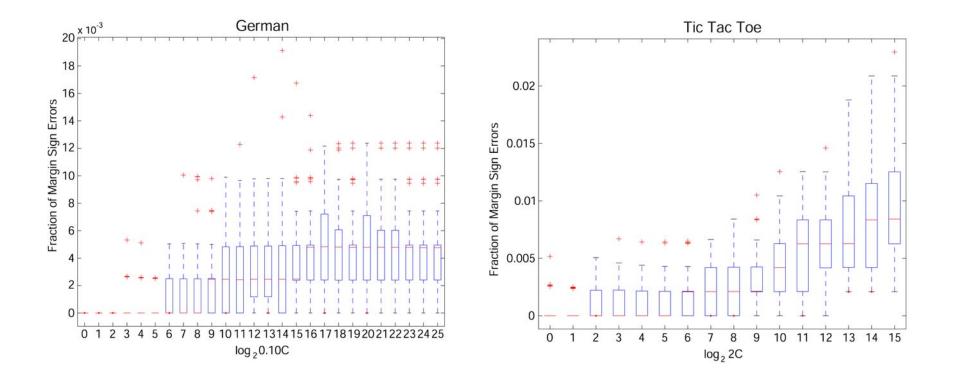
• Two Questions

- 1. How much approximation error are we incurring?
- 2. How much computational savings are we gaining?

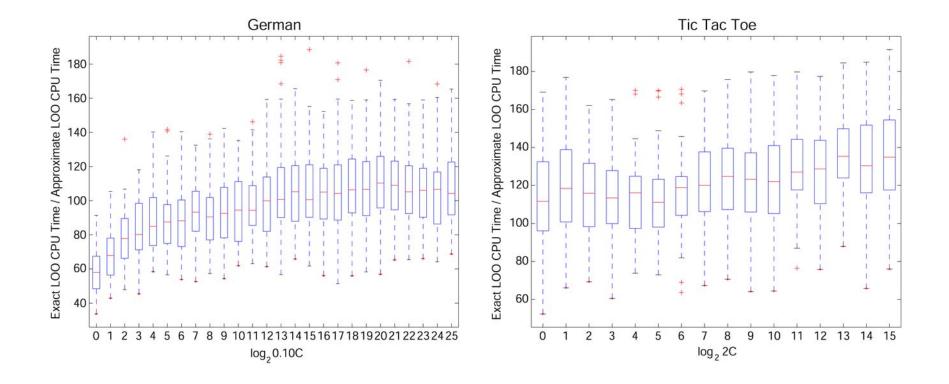
• Evaluation Approach

- 1. Compute fraction of margin sign errors
 - Fraction of examples that yield exact and approximate LOO margins with different signs
- 2. Compute ratio of CPU time used to compute exact and approximate LOO error estimates
 - Used cputime command in MATLAB to collect measurements

Fraction of Margin Sign Errors

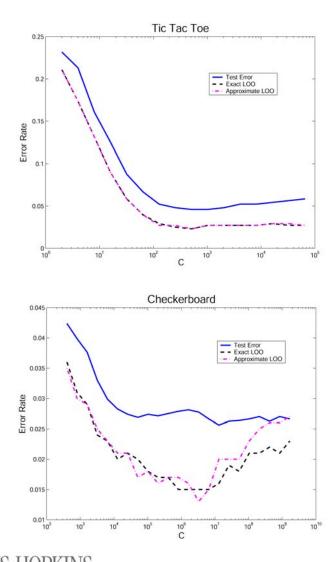


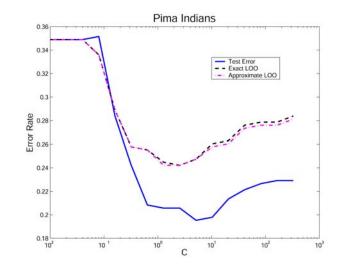
Reduction in CPU Time

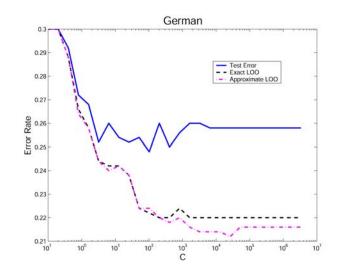


JOHNS HOPKINS U N I V E R S I T Y Applied Physics Laboratory

LOO for Model Selection







UNIVERSITY Applied Physics Laboratory

• Recap

- Introduced approximate LOO error estimation method for strictly convex objective functions
- Method estimates the change in the margin by computing a single Newton step to approximately unlearn a given example

• Future Work

- > Investigate causes of LOO error failing to track the test error
- Define and evaluate method for model selection based on the LOO margin distribution

