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General Large Margin Learning Framework

Class of objective functions includes
Smoothed Support Vector Machines
Kernel Logistic Regression
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Model Selection

The Goal
Identify the model that yields the best generalization 
performance

The Need
An efficient means of estimating the generalization 
performance (error rate) using the available data

Common Approaches
Validation Set
K-fold Cross-Validation
Leave-One-Out (N-fold Cross-Validation)

Almost unbiased estimator of the generalization error
Valuable tool when data is scarce for one or more classes



LOO Error Estimation

Definition
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Approximation Strategy

Estimate )(kf based on f to derive an estimate of

the LOO margin )(k
kz



Unlearning and LOO Margin Estimation

Repeated Steps in LOO
Unlearn the example

Compute the LOO margin

Exact Unlearning
Set regularization parameter             to remove example’s 
influence
Update classifier parameters to minimize

via multiple Newton steps
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Unlearning and LOO Margin Estimation

Approximate Unlearning
Compute only one Newton step to approximate the change in the 
classifier parameters

Estimate of LOO margin is then
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Comments about the Method

Main Computational Expense
Computing                  for each example
Inverse Hessian available from training phase

Margin Sensitivity
Limiting form of approximation yields

Margin increases monotonically with decreasing regularization 
(increasing Ck )
Implies ∆zk ≤ 0 when unlearning the example – examples classified 
incorrectly will remain in error after unlearning

Generalizations
Approximations can be derived for other strictly convex objective 
functions and cross-validation methods (e.g. K-fold cross-
validation)
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Evaluating the Approximation

Two Questions
1. How much approximation error are we incurring?
2. How much computational savings are we gaining?

Evaluation Approach
1. Compute fraction of margin sign errors

Fraction of examples that yield exact and approximate LOO 
margins with different signs

2. Compute ratio of CPU time used to compute exact and 
approximate LOO error estimates

Used cputime command in MATLAB to collect measurements



Fraction of Margin Sign Errors



Reduction in CPU Time



LOO for Model Selection



Conclusion and Future Work

Recap
Introduced approximate LOO error estimation method for 
strictly convex objective functions
Method estimates the change in the margin by computing a 
single Newton step to approximately unlearn a given 
example

Future Work
Investigate causes of LOO error failing to track the test error
Define and evaluate method for model selection based on 
the LOO margin distribution


