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Abstract. Leave-one-out (LOO) error estimation is an important
statistical tool for assessing generalization performance. A num-
ber of papers have focused on LOO error estimation for support
vector machines, but little work has focused on LOO error esti-
mation when learning with smooth, convex margin loss functions.
We consider the problem of approximating the LOO error estimate
in the context of sparse kernel machine learning. We first moti-
vate a general framework for learning sparse kernel machines that
involves minimizing a regularized, smooth, strictly convex margin
loss. Then we present an approximation of the LOO error for the
family of learning algorithms admissible in the general framework.
We examine the implications of the approximation and review pre-
liminary experimental results demonstrating the utility of the ap-
proach.

INTRODUCTION

Model selection is a central issue in machine learning. Given multiple models
that offer some explanation of the data, the goal of model selection is to iden-
tify the model that will yield the best generalization performance. Although
significant work has focused on developing tighter bounds on generalization
performance [7], practitioners still rely primarily on cross-validation methods
to perform model selection.

Leave-one-out (LOO) error estimation is an important statistical tool for
assessing generalization performance. The LOO error estimate is known to
provide an almost unbiased estimate of the generalization error [13]. A num-
ber of papers have focused on LOO error estimation for support vector ma-



chines [20, 9, 18], but little work has focused on LOO error estimation when
learning with smooth, convex margin loss functions such as the logistic loss
used in kernel logistic regression.

We consider the problem of approximating the LOO error estimate in the
context of sparse kernel machine learning. We motivate a general framework
for learning sparse kernel machines that involves minimizing a regularized,
smooth, strictly convex margin loss. This approach captures the defining
attributes of the reduced support vector machine (RSVM) proposed by Lee
and Mangasarian [11]. In the remainder of the paper, we present an approx-
imation of the LOO error for the family of learning algorithms admissible in
the general framework. We examine the implications of the approximation,
review preliminary experimental results and present our conclusions.

THE REDUCED SUPPORT VECTOR MACHINE

Constraining the Weight Vector Expansion

To motivate the RSVM approach, we first reflect on properties of the standard
L1-soft margin SVM algorithm. Recall that the objective is to

min
w,b

1
2‖w‖2 +

N∑
k=1

Ckεk

subject to zk = yk (w · Φ(xk) + b) ≥ 1− εk

εk ≥ 0

where the training set T = {(xk, yk) : (xk, yk) ∈ RI p × {±1}} and the SVM
f(x) = w ·Φ(x)+b. From the Karush-Kuhn-Tucker (KKT) conditions for the
primal optimization problem introduced above and its corresponding dual, we
learn that the weight vector w =

∑
i∈IT

yiαiΦ(xi) where 0 ≤ αi ≤ Ck and IT is

the indexing set for T . The nonzero Lagrange multipliers αi determine which
training examples (support vectors) contribute to the decision boundary.

To explicitly control the number of training examples entering the weight
vector expansion, one approach is to simply select a subset S ⊂ T of the
training set and assume w =

∑
i∈IS

yiαiΦ(xi). Substituting this expression for

w into the primal and studying the properties of the learning algorithm, we
discover two unfortunate outcomes. The constraint on the set of admissible
examples S does not remove the need to solve for N Lagrange multipliers
corresponding to the margin constraints. When N is large, the quadratic
programming problem is still computationally expensive.

In addition, given there are more Lagrange multipliers than classifier pa-
rameters, it is possible that no unique solution exists. In contrast to the
result of Burges and Crisp [2], which indicates the SVM solution is unique
except in extreme circumstances, it is increasingly likely the solution will not



be unique as the size of the set S is decreased1. Therefore we’ve removed a
desirable property of the original SVM algorithm with this modification. To
recover from this, an additional modification is needed.

Smoothing the Margin Loss Function

Consider the class of large margin learning algorithms with objective func-
tions of the form

L(w, b) =
1
2
‖w‖2 +

N∑
i=1

Cig(zi) (1)

where zi = yi(w·Φ(xi)+b) and g is a convex margin loss. The KKT conditions

imply w =
N∑

i=1

−yiCig
′(zi)Φ(xi) at the optimum [3]. Given the influence of

a training example xi is determined by the slope of the margin loss at the
margin value zi, objective functions with regions of zero slope, such as the
hinge loss g(z) = [1− z]+ used in the L1-soft margin SVM algorithm, induce
some level of sparsity. Yet it complicates the learning problem by introducing
constraints.

To avoid such complications, Lee and Mangasarian [10, 11] proposed using
a smooth, strictly convex margin loss function and removing any constraints
on the coefficients in the weight vector expansion. This converts the learning
problem into an unconstrained, convex optimization problem that can be
solved using a fast Newton method. Given a strictly convex margin loss does
not admit sparse solutions, the constraint on the weight vector expansion is
key to obtain the level of sparsity we desire.

The RSVM Learning Algorithm

If one views the RSVM approach as being principally defined by the union
of the above ideas, one can define a family of RSVM algorithms that differ
only in terms of the regularizer and margin loss chosen. Consider the general
objective function

L(α, b) = Ω(α, b) +
N∑

i=1

Cig(zi) (2)

where zi = yi

( ∑
j∈IS

yjαjK(xj , xi) + b

)
and Ω and g are strictly convex.

Minimization of this objective function is accomplished using a standard
Newton descent algorithm where the updates[

∆αk

∆bk

]
= −

(
∇2

α,bL
∣∣
(αk−1,bk−1)

)−1

∇α,bL|(αk−1,bk−1)
(3)

1In order for a unique solution to exist, the minimum of the constrained optimization
problem must be a regular point [12]. A regular point exists if the gradient vectors for the
constraint equations at the minimum are linearly independent. When the number of active
margin constraints exceeds |S|+ 1, a regular point does not exist. We omit the details.



are computed at each iteration k. Since we can minimize the primal directly,
we gain the benefit of conducting the optimization in a parameter space of
dimension |S| + 1 � N . In our experiments, the minimization converged in
less than 15 iterations.

This framework admits reduced forms of several standard large margin
algorithms. In our experiments, we used the regularizer

Ω(α, b) =
1
2

∑
i∈IS

∑
j∈IS

yiyjαiαjK(xi, xj) (4)

and the margin loss g(z) = h(1− z, 1) where h(x, λ) is the following smooth
approximation of [x]+

h(x, λ) =
1
λ
log

(
1 + eλx

)
, λ > 0. (5)

This yields an RSVM algorithm similar to the L1-soft margin SVM. Using
the same regularizer with the margin loss g(z) = h(−z, 1) yields an RSVM
algorithm for sparse kernel logistic regression. In the formulation presented
by Lee and Mangasarian [11], they use the regularizer Ω(α, b) = 1

2 (α ·α+b2)
and the margin loss g(z) = h(1 − z, λ)2 yielding a variant of the L2-soft
margin SVM.

Related Approaches

Clearly the ideas presented above bear strong relation to a number of previous
publications. Learning with smooth, convex margin loss functions first gained
significant attention as the connection between boosting and large margin
algorithms became clear [15, 14]. Since then, several publications [16, 19,
21, 17] have presented related methods that incrementally construct sparse
kernel machines by selecting training examples to include in S that lead to
rapid minimization of the objective function. The main difference between
the RSVM and these approaches is that the RSVM uses random selection as
opposed to active selection.

In [16, 19, 21], model selection was addressed by using a validation set to
assess the impact of parameter choices. In [17], a recent generalization bound
was used to assess performance. To our knowledge, no one has suggested
principled methods for efficient cross-validation in this context. In the next
section, we present a method for approximate leave-one-out error estimation
for the general framework above. An interesting avenue of future work will
be to explore the utility of this approach for active selection algorithms such
as [21] that minimize similar objective functions2.

2In [21], the import vector machine algorithm performs sparse kernel logistic regression.



APPROXIMATE LEAVE-ONE-OUT ERROR ESTIMATION

General Approach

By definition, the LOO error estimate is

eloo =
1
N

N∑
k=1

I
{

z
(k)
k < 0

}
(6)

where z
(k)
k = ykf (k)(xk) and f (k) is the classifier resulting from training on

all the examples except xk. Given the exact computation of eloo requires
N runs of the learning algorithm, a number of papers have focused on the
task of approximating f (k) [20, 8, 9, 18]. [8, 9] present upper bounds on the
LOO error while [20, 18] attempt to approximate the result. [20, 9, 18] focus
on SVMs while [8] provides a loose upper bound suitable for kernel logistic
regression.

Our approach was inspired by insights derived from the study of exact,
incremental SVM (un)learning [4, 5] which allows one to exactly compute
the LOO error by unlearning each example individually from the SVM solu-
tion. Incremental unlearning in this context can be viewed as an incremental
perturbation of the SVM solution as the regularization parameter for the
unlearned example is reduced to zero. The span rule proposed by Vapnik
and Chapelle [18] performs a simplified version of the unlearning where it is
assumed that none of the training examples change status during the pro-
cess. This leads to an approximation for z

(k)
k that is easily computed in the

incremental SVM learning framework.
We will define an approximation for z

(k)
k in a similar manner. Recall the

general objective function (2) for RSVM learning. To approximate f (k), we
first set Ck = 0 to remove the influence of xk, yielding the objective function
L(k)(α, b). If xk is a member of S, we should ideally replace xk with another
randomly selected example to account for the selection process and adapt
the regularizer accordingly. We have chosen to keep xk in the weight vector
expansion in such cases.

Next we compute one Newton step with respect to L(k)(α, b) to obtain
an estimate of the change in the RSVM parameters

[
∆α
∆b

]
= −

(
∇2

α,bL
(k)

∣∣∣
(α∗,b∗)

)−1

∇α,bL
(k)

∣∣∣
(α∗,b∗)

. (7)

(α∗, b∗) are the classifier parameters that define f . The corresponding esti-
mate for z

(k)
k is then

z
(k)
k ≈ zk + yk

∑
j∈IS

yj∆αjK(xj , xk) + yk∆b. (8)

Substituting this result into (6), we obtain our estimate of the LOO error.



Efficient Computation of ∆zk

The key to efficiently approximating the change in the margin ∆zk = z
(k)
k −zk

is an update equation relating the inverse Hessians for f (k) and f . One can
show that the update equation for the Hessian is

∇2
α,bL

(k) = ∇2
α,bL − Ckg′′(zk)q̂kq̂T

k (9)

where q̂T
k = [Qjk∀j ∈ IS . . . yk] and Qjk = yjykK(xj , xk). Given the Hessian

update involves subtracting a rank one matrix from the original Hessian,
we can use the Sherman-Morrison-Woodbury formula [6] to easily derive the
update equation for the inverse Hessian. This yields

(∇2
α,bL

(k))−1 = (∇2
α,bL)

−1 − vkvT
k

q̂T
kvk − 1

Ckg′′(zk)

(10)

where vk = (∇2
α,bL)

−1q̂k.
To obtain a simplified expression for ∆zk, we first reexpress (8) in matrix-

vector form which yields

∆zk ≈ −q̂T
k

(
∇2

α,bL
(k)

∣∣∣
(α∗,b∗)

)−1

∇α,bL
(k)

∣∣∣
(α∗,b∗)

. (11)

The gradient ∇α,bL
(k) can be expressed in terms of ∇α,bL as

∇L
(k)
α,b = ∇Lα,b − Ckg′(zk)q̂k. (12)

Evaluated at the optimum (α∗, b∗), it reduces to simply

∇L
(k)
α,b

∣∣∣
(α∗,b∗)

= −Ckg′(zk)q̂k. (13)

Substituting the results from (10) and (13) into (11), we find

∆zk ≈ Ckg′(zk)q̂T
k

(
H−1 − vkvT

k

q̂T
kvk − 1

Ckg′′(zk)

)
q̂k (14)

where H−1 =
(
∇2

α,bL
∣∣∣
(α∗,b∗)

)−1

and vk = H−1q̂k. After a bit of algebra,

this simplifies to

∆zk ≈ Ckg′(zk)q̂T
kH

−1q̂k

1− Ckg′′(zk)q̂T
kH−1q̂k

. (15)

After computing q̂T
kH

−1q̂k, the computation of the approximation is trivial.



Margin Sensitivity and Unlearning

As a given example xk is unlearned by reducing the regularization param-
eter Ck to zero, we expect that the corresponding margin zk will decrease
monotonically. If this is true, the margin sensitivity ∂zk

∂Ck
should always be

greater than or equal to zero. (15) provides an approximation for ∆zk when
∆Ck = −Ck. Generalizing this result, we obtain an approximation for ∆zk

∆Ck

given an arbitrary ∆Ck

∆zk

∆Ck
≈ −g′(zk)q̂T

kH
−1q̂k

1 + ∆Ckg′′(zk)q̂T
kH−1q̂k

. (16)

Taking the limit as ∆Ck → 0, we obtain the margin sensitivity ∂zk

∂Ck

∂zk

∂Ck
= −g′(zk)q̂T

kH
−1q̂k. (17)

Consider the signs of the components of (17). Given H−1 is positive
definite, q̂T

kH
−1q̂k ≥ 0. By definition, g′(zk) ≤ 0 for all convex margin

losses. Therefore ∂zk

∂Ck
≥ 0 as expected.

This result has two implications for the LOO process. For all examples
with negative margins prior to unlearning, there is no need to estimate ∆zk

since the margin will only become more negative. Therefore xk will continue
to be misclassified and can be counted as an error immediately. This result
also warns us to be wary of the margin approximation if the sign of ∆zk is
positive. If ∆Ck is large enough such that 1 +∆Ckg′′(zk)q̂T

kH
−1q̂k < 0, the

approximation is surely breaking down.

RESULTS AND CONCLUSIONS

We conducted a preliminary series of experiments to test the model selection
utility of the LOO approximation. We investigated this by collecting statistics
on the deviation between the test error for the classifier floo selected using
the LOO error and the test error for the best performing classifier f∗. An
experiment on a given dataset consisted of 30 trials. Each trial involved
randomly selecting |S| examples to include in the weight vector expansion.
During each trial, the kernel was fixed and the regularization parameter was

incremented over a given range. The RBF kernel K(x, y) = e
−‖x−y‖2

σ2 was
used in all of the experiments. The tests were conducted on four datasets:
the Checkerboard dataset and the Tic-Tac-Toe, Pima Indians and German
datasets from the UCI repository [1].

Table 1 presents summary statistics for the experiments. The means and
standard deviations of the difference between the test errors for f∗ and floo

are shown. To provide a sense of the significance of these deviations, the 95%
confidence intervals for test sets of the specified sizes are given. We used the
Hoeffding inequality [7] to compute the confidence bounds.



Table 1: Test Error Deviation Statistics

# # Mean Test Std. Dev. 95% Confidence
Dataset Train Test |S| Error ∆ Test Error ∆ Interval ±ε

Checkerboard 1000 8000 50 0.00062 0.0007 0.015
Tic-Tac-Toe 479 479 40 0.0026 0.0033 0.062
Pima Indians 384 384 30 0.0065 0.0088 0.069
German 500 500 50 0.011 0.011 0.061

The performance of the model selection procedure on the Checkerboard
and Tic-Tac-Toe datasets was excellent. The LOO error consistently identi-
fied classifiers yielding test error rates at or near the optimal rates. Perfor-
mance on the Pima Indians and German datasets was good over most trials.
Yet there were several trials with more significant test error deviations that
warranted further investigation.

Figure 1 shows a series of plots of the LOO error and the test error for
classifiers with a range of regularization parameters. The first four plots (a)-
(d) provide a look at one randomly selected trial for each dataset. In all
cases, a classifier with near optimal or optimal performance was selected.

The remaining plots (e)-(f) illustrate two known failure modes that occur
when using the LOO error for model selection. In the first case, multiple
minima in the LOO error curve introduce ambiguity in the model selection
process. Without additional constraints, there is no clear choice. In the
second case, the LOO error fails to adequately track the test error. Both
the exact and approximate LOO error curves provide misleading guidance
for model selection.

In future work, we will compare the exact and approximate LOO error
through extensive experimentation to fully characterize the performance of
the approximation. Then we intend to define an approximation of the LOO
error variance based on the ideas presented here. Such an estimate will be
useful for mitigating the failure modes outlined above. Meanwhile we will
conduct additional experiments to investigate why the LOO error does not
track the test error appropriately in certain cases. Understanding this failure
mode is critical in order to devise improved model selection approaches.
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Figure 1: LOO and test error rates: (a) Checkerboard: 50 kernels (b) Tic-Tac-Toe:
40 kernels (c) Pima Indians: 30 kernels (d) German: 50 kernels ; Conditions leading
to poor model selection performance: (e) Multiple minima lead to model selection
ambiguity (f ) LOO error curve fails to adequately track the test error.


