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Abstract—This paper presents a method for anomaly detec-
tion in hyperspectral images based on the support vector data
description (SVDD), a kernel method for modeling the support
of a distribution. Conventional anomaly-detection algorithms are
based upon the popular Reed–Xiaoli detector. However, these
algorithms typically suffer from large numbers of false alarms
due to the assumptions that the local background is Gaussian and
homogeneous. In practice, these assumptions are often violated, es-
pecially when the neighborhood of a pixel contains multiple types
of terrain. To remove these assumptions, a novel anomaly detector
that incorporates a nonparametric background model based on
the SVDD is derived. Expanding on prior SVDD work, a geometric
interpretation of the SVDD is used to propose a decision rule
that utilizes a new test statistic and shares some of the properties
of constant false-alarm rate detectors. Using receiver operating
characteristic curves, the authors report results that demonstrate
the improved performance and reduction in the false-alarm rate
when using the SVDD-based detector on wide-area airborne mine
detection (WAAMD) and hyperspectral digital imagery collection
experiment (HYDICE) imagery.

Index Terms—Hyperspectral, support vector data description,
target detection.

I. INTRODUCTION

R ECENT advances in hyperspectral sensors with high
spectral and spatial resolution have led to an increased

interest in exploiting spectral imagery for target detection.
Given the availability of spectral libraries for a wide range
of materials, detection algorithms that exploit a known target
signature have been widely investigated. It has been shown [19]
that such algorithms are dependent on the degree of signal mis-
match between the spectral libraries and the spectra observed
in an image. Complications arising from: 1) accurate spectral
calibration; 2) compensating for atmospheric effects to convert
radiance spectra to the reflectance domain; or 3) the availability
of reliable atmospheric data to convert reflectance values to the
radiance spectra can lead to errors that hinder the performance
of known signature detectors.

Such complications can be avoided by using an anomaly
detector. Detecting anomalies in hyperspectral imagery entails
the task of locating pixels with spectral signatures that deviate
significantly from the local background. Anomaly detectors
have the advantage of not requiring a priori knowledge of the
target’s spectral signature and, therefore, can process images
completely in scene. However, anomaly detectors usually suffer
from a high false-alarm rate (FAR) due to the simplifying
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assumptions imposed on the background signature distribution.
In this paper, we present a new kernel-based approach that
removes these assumptions to detect spectral anomalies while
mitigating the FAR.

Lacking prior target signatures, anomaly-detection methods
model the background and find pixels in the scene which are
not well described by the background model. This is typically
achieved by identifying the region of the given feature space
that contains most of the background pixels. If the pixel under
test falls in this region, it is labeled as part of the background;
if it lies outside of the background’s region of support,1 it is
detected as an outlier and declared as a target.

In general, there are two types of methods for computing
the region of support for the background. One is to estimate
the underlying probability density function (pdf) for the back-
ground signature and threshold the result. The form of the pdf
resolves the shape, and the threshold value determines the size
of the support region. The most commonly used models for
the density function f(x) are the local Gaussian model, the
global Gaussian mixture model, and the global linear mixture
model. The second approach is to estimate the region of support
directly without assuming its shape.

The Reed–Xiaoli (RX) algorithm, which is the benchmark
anomaly detector for hyperspectral imagery, uses the local
Gaussian model [1]. With this approach, the background pixels
in a local neighborhood around the pixel under test are assumed
to be independent identically distributed Gaussian random
variables. After estimating the background mean vector and
covariance matrix, the Mahalanobis distance between the pixel
under test and the background mean vector is compared to a
threshold to detect an anomaly [1].

There are two issues with the RX algorithm that limit its
performance. In many environments, it has been shown em-
pirically that the local normal model provides an inadequate
representation of the underlying distribution [9] leading to
poor false alarm performance. This is especially true when the
local background contains multiple classes of terrain. Using a
goodness-of-fit test statistic for hyperspectral imagery based
upon the Barringhaus, Henze, Epps, and Pully (BHEP) test,
it has been shown that the normal model is not valid in most
situations [10]. In addition, the RX algorithm is computation-
ally intensive when operating on hyperspectral imagery. This
is due to the need to estimate and invert large covariance
matrices.

1The region of support for the random variable x can be represented by an
indicator function I(x), where I(x) = 1 if the pdf of x is greater than or equal
to a given threshold, and I(x) = 0 if f(x) is less than the threshold [17].
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If the local background contains multiple types of terrain,
the background cannot be properly modeled by a unimodal
distribution. To more properly characterize nonhomogeneous
backgrounds, researchers have employed the mixture of
Gaussian models [11]. This approach models the background
signature distribution as a linear combination of Gaussian dis-
tributions. The number of distributions, their weights, and the
parameters of the normal pdfs are estimated using a stochas-
tic expectation maximization (SEM) method [12]. Given the
parameters of the mixture of Gaussian model, a generalized
likelihood ratio test (GLRT) is applied to detect outliers. While
this Gaussian mixture model provides an improved perfor-
mance over the RX algorithm, it still requires the estimation and
inversion of large covariance matrices and is further limited by
the need to know or estimate a priori the number of classes of
terrain in the image.

In [13], the use of Gauss–Markov random fields (GMRFs)
is introduced for hyperspectral anomaly detection. The spectral
and spatial correlations of background clutter in hyperspectral
imagery are described by the GMRF. The estimated parameters
of the GMRF are then used in the GLRT to detect the outliers.
The principal advantages of this method are that it is compu-
tationally efficient, even for high-dimensional data, and uses
spatial information that is usually ignored by most detectors.
However, the model assumes that the background is locally
homogeneous, which can lead to a poor performance when the
targets are located along the clutter boundaries.

To perform the anomaly detection, the ultimate goal is to es-
timate the shape and size of the support region. Since the values
of the pdf are ultimately not of interest, estimating the density
function across the entire feature space is unnecessary. In
keeping with Vapnik’s [17] principle of avoiding more difficult
estimation problems along the path to the desired solution, one
can estimate the region of support directly for the background
and avoid the problem of estimating the underlying pdf.

Recently, large-margin techniques, such as support vector
machines (SVMs), have received considerable attention for
classifying high-dimensional non-Gaussian data. SVMs yield
good generalization performance on such problems by directly
estimating a decision boundary with maximal separability. Mo-
tivated by the success of SVMs in classifying pixels in hyper-
spectral imagery [2], [3], we extend the SVM approach to detect
spectral anomalies. For the particular problem of anomaly
detection, several one-class classifiers have been derived in the
literature, including the support vector data description (SVDD)
[7], [8] and the ν-SVM [15] methods. These classifiers are able
to directly estimate the support region for a given dataset. The
SVDD is a technique that has been used in several domains,
such as faulty-machine-part detection [8] and image retrieval
[18]. In this paper, we develop an algorithm that utilizes the
SVDD to detect spectral anomalies that lie outside the region
of support for local background pixels.

For anomaly detection, the SVDD approach has the follow-
ing benefits: Nonparametric: it is a data-driven method that
avoids prior assumptions about the distribution of the data.
Sparsity: fewer training samples are needed, and thus fewer
pixels are needed to accurately characterize the background;
Good Generalization: the method avoids overfitting and yields

good generalization results when compared to other classical
methods [8], [17]; and Use of kernels: by exploiting the “kernel
trick,” the SVDD method is able to accurately model the
support of nontrivial multimodal distributions. Therefore, the
SVDD-based anomaly detector yields more powerful detection
performance for targets embedded in non-Gaussian and nonho-
mogeneous backgrounds.

The recently introduced kernel RX algorithm [20] is a related
technique for anomaly detection. It is a nonlinear version
of the RX detector that uses kernels to model non-Gaussian
distributions. The kernel RX detector has two key differences
with the SVDD approach. While the SVDD avoids the problem
of density estimation, the kernel RX assumes a Gaussian dis-
tribution in the feature space. This assumption is the equivalent
to a Parzen estimate for the distribution in the original feature
space [20]. The second difference is that the kernel RX requires
the estimation and inversion of a large covariance matrix, a
computational burden that the SVDD avoids.

This paper is organized as follows. Section II provides an
overview of the derivation of the SVDD one-class classifier.
The algorithm to detect hyperspectral anomalies using the
SVDD is presented in Section III, along with a discussion of
a new SVDD test statistic. Experimental results are provided in
Section IV to evaluate the RX and SVDD anomaly detectors.
Finally, concluding remarks are given in Section V.

II. DERIVING THE SVDD

In the following, we first introduce the linear SVDD, which
models the support of the distribution as the minimal enclosing
hypersphere containing the data in the original input space.
Then, we generalize this result through the use of kernel
functions to the nonlinear SVDD, which first maps the input
space to a high-dimensional feature space and then estimates
the minimum enclosing hypersphere in the feature space.

Before proceeding, we note that the one-class classifiers
mentioned above, the SVDD and the ν-SVM, are related. While
the SVDD computes an optimal hypersphere that contains
the data, the ν-SVM estimates a large-margin hyperplane that
separates the data and the origin of the space in which the data
resides [16]. It has been shown [15], [16] that these methods
are equivalent when the radial basis function (RBF) is chosen
as the kernel function, which is the common practice.

A. Linear SVDD

To determine the minimum enclosing hypersphere S = {x :
‖x − a‖2 < R2} that contains the training set T = {xi, i =
1, . . . ,M}, we must solve the following constrained optimiza-
tion problem:

min(R) subject to xi ∈ S, i = 1, . . . , M.

The center a and radius R of the minimum enclosing hyper-
sphere can be found by optimizing the following Lagrangian:

L(R,a, αi)= R2−
∑

i

αi

{
R2−(〈xi,xi〉−2〈a,xi〉+〈a,a〉)}.

(1)
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The first term in (1) is the radius, which we aim to minimize.
The second term constrains each training point xi to lie within
the sphere with center a and radius R. The optimal solu-
tion must satisfy the Karush–Kuhn–Tucker (KKT) conditions.
Taking the partial derivatives of L with respect to R and a and
setting them to 0 yields

∂L

∂R
= 0 ⇒

∑
i

αi = 1 (2)

∂L

∂a
= 0 ⇒ a =

∑
i αixi∑

i αi
. (3)

By combining (2) and (3), a simple expression for the center
of the sphere is found

a =
∑

i

αixi. (4)

The center of the sphere is the center of mass of all training
points, with the weights equal to the Lagrange multipliers.
Furthermore, the inequality ‖xi − a‖2 < R2 implies αi ≥ 0
according to the nonnegativity constraint of the KKT. Substi-
tuting (2) and (4) into (1) yields another expression for the
Lagrangian function to be maximized with respect to αi

L =
∑

i

αi (〈xi,xi〉) −
∑
i,j

αiαj (〈xi,xj〉) . (5)

After optimizing L with respect to α, it is typical to discover
that a large fraction of the αi is equal to zero. The training
examples with nonzero αi are called support objects2 and lie
on the boundary of the support region. This is a result of
the complementary slackness condition of the KKT, which
states that (‖xi − a‖2 − R2)αi = 0 for optimality. Hence, the
support objects must lie on the boundary of the hypersphere.
Therefore, the SVDD yields a sparse representation of the
support expressed entirely in terms of the support objects.

Once the minimum enclosing hypersphere has been found,
outliers are identified by testing whether or not the test exam-
ples lie within or outside the hypersphere. When the decision
rule ‖y − a‖2 ≥ R2 holds true for a test example y, the exam-
ple is labeled as an outlier. Expanding

‖y − a‖2= (y−a)T(y−a)

=

(
y−
∑

i

αixi

)T (
y−
∑

i

αixi

)

= 〈y,y〉−2
∑

i

αi(〈y,xi〉)+
∑
i,j

αiαj (〈xi,xj〉) (6)

the decision rule becomes

〈y,y〉 − 2
∑

i

αi (〈y,xi〉) +
∑
i,j

αiαj (〈xi,xj〉) ≥ R2. (7)

We refer to (4) as the linear SVDD decision rule.

2The terms support object and support vector are used interchangeably
throughout the paper.

B. Kernel-Based SVDD

In most instances, a hypersphere does not provide a tight
representation of the support of the data in the original input
space. Additional flexibility is needed to model arbitrarily com-
plex distributions. To address this, the nonlinear SVDD maps
the data from the input space to a higher dimensional feature
space through the use of a mapping Φ(x), and models the
support of the distribution as a minimum enclosing hypersphere
in the feature space. This hypersphere corresponds to a tighter
boundary for the support region in the original input space.

Proceeding, as in the previous section, we now seek the
smallest hypersphere in the induced feature space S = {Φ(x) :
‖Φ(x) − c‖2 < R2} including the entire set of mapped training
examples T = {Φ(xi), i = 1, . . . ,M}. We therefore need to
solve the following constrained optimization problem:

min(R) subject to Φ(xi) ∈ S, i = 1, . . . , M.

The corresponding Lagrangian is expressed as

L(R,a, αi) = R2

−
∑

i

αi

{
R2−(〈Φ(xi),Φ(xi)〉−2 〈c,Φ(xi)〉+〈c, c〉)} (8)

with Lagrange multipliers αi. Setting the partial derivatives of
L with respect to R and a to zero, and substituting the results
into L yields

L =
∑

i

αi 〈Φ(xi),Φ(xi)〉 −
∑
i,j

αiαj 〈Φ(xi),Φ(xj)〉 (9)

with αi ≥ 0,
∑

i αi = 1. This also gives an expression for the
center of the sphere

c =
∑

i

αiΦ(xi).

As above, the hypersphere center is the center of gravity of
the support vectors given the optimal weights αi. The corre-
sponding decision rule to detect an anomaly for a test pixel y is
SVDD(y) = ‖Φ(y) − c‖2 ≥ R2, which expands to

SVDD(y) = ‖Φ(y) − c‖2

=

∥∥∥∥∥Φ(y) −
N∑

i=1

αiΦ(xi)

∥∥∥∥∥
2

= 〈Φ(y),Φ(y)〉 − 2
∑

i

αi 〈Φ(y),Φ(x)〉

+
∑
i,j

αiαj 〈Φ(y),Φ(x)〉 . (10)

Note that the above expression consists of inner products of
the mapping function Φ. Using the well-known “kernel trick,”
these inner products can be represented by a kernel function
K(x,y). Kernel functions provide a computationally efficient
technique to implicitly map the data into the induced feature
space and compute the inner product. The only requirement im-
posed on the kernel function is that it satisfies Mercer’s theorem
[17]. Mercer’s theorem states that in order for a kernel function
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Fig. 1. SVDD decision boundary using σ = 5 (left) and σ = 3 (right). Note
how using a smaller value for sigma leads to a tighter decision boundary.

K(x,y) : RN × RN → R, (x,y) �→ z = K(x,y) to admit
an eigenfunction expansion of the form

K(x,y) = 〈Φ(x),Φ(y)〉 =
∞∑

k=1

bkφ(x)φ(y)

it must be positive semi-definite.

∫
K(x,y)g(x)g(y)dxdy ≥ 0,∀g(.) ∈ L2.

Under these conditions, the SVDD statistic can be simply
expressed as

SVDD(y)=K(y,y)−2
∑

i

αiK(y,xi)+
∑
i,j

αiαjK(xi,xj)≥R2.

Such continuous symmetric positive semi-definite kernel func-
tions play the role of a dot product, thereby forming a new
Hilbert space where the problem of determining the minimum
enclosing hypersphere can be posed in a sensible fashion.

In this paper, we use the popular Gaussian RBF as the kernel
function defined as

K(x,y) = exp
(−‖x − y‖2

σ2

)
.

The choice of the RBF simplifies the SVDD(y) test statistic to

SVDD(y)= 1 − 2
∑

i

αiK(y,xi)+
∑
i,j

αiαjK(xi,xj) ≥ R2

(11)

since K(y,y) = 1. The RBF has one free parameter, which is
the scale parameter σ. This parameter affects the tightness of
fit for the training data (and, therefore, boundary smoothness),
as shown in Fig. 1. As explained in [7] and in Section III-A,
it is a measure of how well the SVDD generalizes to unseen
data. By varying the scale parameter of the RBF, the SVDD
can determine multiple regions of support for a dataset. As
can be seen Fig. 1, this allows the SVDD to model multimodal
distributions. For anomaly detection, this implies that the
SVDD can detect targets embedded in multiple types of clutter
with fewer false alarms.

Fig. 2. Example of a hollow window used to collect pixels for background
estimation.

III. SVDD HYPERSPECTRAL

ANOMALY-DETECTION ALGORITHM

A. Outline of Algorithm

Using the above derivation, the steps for the SVDD anomaly
detector are similar to those of the RX algorithm. The SVDD
statistic is computed at each pixel to determine if the pixel
lies within the support region of the background pixels. This
approach replaces the Mahalanobis distance used in the RX
detector with the SVDD(y) measure. The steps for the SVDD-
based anomaly detection are as follows.

1) Select the dimensions of the hollow background window.
2) Estimate the sigma, which is the scale parameter of the

RBF kernel.
3) Given the window size and the scale parameter, for each

pixel:
a) sample the pixels from the local neighborhood using

the background window;
b) using these pixels, compute the SVDD parameters

(a, αi, R) to model the region of support for the
background clutter;

c) decision.
i) If SVDD(y), the SVDD test statistic for pixel y is

less than the detection threshold T ; the pixel is part
of the background.

ii) Otherwise, declare the pixel as a target.
Details for steps 1) and 2) of the algorithm are given below.
Dimensions for the Background Window: Local background

samples around the pixel under test are used to estimate the
background SVDD parameters. The samples are collected from
a hollow rectangular window centered at the pixel. The window
consists of two regions, the inner and outer window regions,
as shown in Fig. 2. The dimensions of each region are based
on the spatial resolution of the image and the expected size
of the targets. The size of the inner area should accommodate
the typical or largest expected target in the scene. The size of
the outer window should be large enough to collect a sufficient
number of training samples for the background estimation.
Estimating Sigma: Choosing an appropriate value for the

RBF kernel scale parameter is critical for acceptable detection
performance. As shown in [7], [8], and [19], and illustrated in
Fig. 1, if the value of sigma is too small, the resulting decision
boundary overfits the data and does not generalize well to the
unseen data. If sigma is too large, the classifier underfits the data
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and computes a possibly trivial decision boundary. We present
a minimax approach for estimating a scale-parameter value that
yields good generalization performance.

The performance of anomaly detectors is commonly char-
acterized by two measures of error: the FAR (classifying a
background pixel as an outlier), and the false acceptance rate
(accepting a target pixel as part of the background). Since
the target spectra are unknown, it is not possible to estimate
the false acceptance rate from the training samples. Therefore,
we use a method to estimate sigma that minimizes the FAR.
Using an argument based on leave-one-out cross validation,
the following upper bound on the FAR can be derived for the
SVDD [7], [8], [17]:

Pfa ≤ E
[
#SV
N

]
.

In this expression, Pfa is the FAR, #SV is the number of
support vectors in the SVDD model, and N is the total number
of training samples. Given that the expectation in the above
expression is over the training sets of size N , we cannot
estimate the expectation from a single training set. There-
fore, we substitute the resulting number of support vectors
for the SVDD model in place of the expectation to obtain an
approximate upper bound. Through a resampling process, it
would be possible to develop a lower variance estimate of the
expectation. Yet at this point in our investigation, it is not clear
that the extra computational cost is warranted.

To avoid the computational expense of estimating sigma for
every SVDD model while scanning through the image, we have
chosen instead to estimate a value of sigma that minimizes the
average FAR across the entire image. Using the above result,
one can derive the following approximate minimax estimate
for sigma that minimizes an approximate upper bound on the
average FAR

σ̂ = min
σ

1
M

M∑
i=1

Pfa_i

≈ min
σ

{
1
M

M∑
i=1

E
(

#SVi

N

)}

≈ min
σ

{
1
M

M∑
i=1

#SVi

N

}

where M is the number of training sets, N is the number of
examples in each training set, and #SVi is the number of
support vectors found for the ith training set.

The algorithm to obtain this global estimate for sigma is as
follows: Generate multiple sets of training data by randomly
selecting pixels from the image. For each set of training data,
the SVDD decision boundary is determined using different
values for sigma. For each value of sigma, the average fraction
of support vectors is computed over all of the training sets. The
sigma that produces the smallest average fraction of support
vectors is the minimax estimate.

Fig. 3 provides an example of the minimax estimate for
sigma described above. In this example, three sets of sixty
training samples are randomly selected from a hyperspectral
image. The SVDD classifier is trained on all three datasets with

Fig. 3. Fraction of support vectors as a function of sigma for three SVDD
models. From these curves, the optimal estimate for sigma that minimizes the
upper bound for the FAR is approximately 13.

varying values for sigma. It can be seen that the number of
support vectors is minimum for all three curves at σ = 13.

B. Normalized SVDD Test Statistic

Anomaly detectors compute a statistic that provides a mea-
sure of similarity to the background for each pixel in the image.
The statistic can be used to directly compare the pixels and
identify those that are more likely to be anomalies. This allows
for the use of a single threshold for the entire image. By
varying this global threshold, an empirical receiver operating
characteristic (ROC) curve can be generated to evaluate the
performance of the detector.

One class of such detectors is the constant FAR (CFAR) de-
tectors [4]–[6]. The CFAR property is useful because it allows
for the determination of a single detection threshold that: 1)
generates a desired number of false alarms; 2) is independent of
the estimated parameters; and 3) can be used for every pixel in
the image.

The RX algorithm is an example of a CFAR detector [11].
Using the Mahalanobis distance, each pixel is normalized to
yield a zero-mean Gaussian random variable with an identity
covariance matrix. This allows the algorithm to compute a
detection threshold via∫

x:f(x)<T

f(x)dx = Pfa

where f(x) ∼ N(0, I), and Pfa is the desired FAR. Note that
T is computed independently of the estimated background
parameters. Furthermore, if the pixels are Gaussian distributed,
the threshold will generate the desired number of false alarms.

For the SVDD, we can similarly derive a normalized test
statistic. In contrast to the RX algorithm, we motivate the
following normalization procedure geometrically and strictly
avoid imposing assumptions about the underlying distribution.
Recall from Section II-B that the nonlinear SVDD estimates
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the minimum enclosing hypersphere centered at a with radius
R in the feature space as the support region for the background
pixels. From (10), the distance between the mapped example
Φ(y) and the centroid of the hypersphere c is

‖Φ(y)−c‖2 = 1 − 2
∑

i

αiK(xi,y)+
∑

i

∑
j

αiαjK(xi,xj)

which is the original SVDD statistic. Since the radius of the
optimal hypersphere will vary from pixel to pixel, the distance
to the centroid cannot be used to compare the similarities of
multiple pixels to their respective backgrounds. Therefore, we
utilize a normalized version of the SVDD test statistic

SVDDN (y) =
‖Φ(y) − c‖2

R2

=
1 − 2

∑
i

αiK(xi,y) +
∑
i

∑
j

αiαjK(xi,xj)

R2
.

(12)

By dividing the original statistic by the squared radius, the
SVDDN (y) function effectively transforms the feature space
so that the minimum enclosing hypersphere encompassing
the data has unit radius. This normalization allows for direct
comparison of SVDD function values for different pixels in
the image. The detection threshold T can now be chosen
independently of the estimated SVDD parameters.

Selecting the detection threshold analytically is an important
consideration. CFAR detectors, such as the RX, allow for the
estimation of a threshold based on a desired FAR. However,
if the data are non-Gaussian, the CFAR properties no longer
hold, and choosing an appropriate threshold based on the FAR
is not possible. As the SVDD is a nonstatistical technique, it
is difficult to compute the threshold analytically. Instead, its
detection threshold can be determined empirically as follows.
The SVDD detector is applied to multiple images of different
clutter types imaged under various atmospheric conditions. The
resulting ROC curves are stored and indexed by the clutter and
atmospheric conditions. When applying the SVDD detector on
a new image, the ROC curve most closely approximating the
new operating conditions is used to determine the detection
threshold. Given an acceptable range for the FAR, the optimal
threshold can be inferred.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the computational and detection
performance of the RX, SVDD, and normalized SVDD algo-
rithms. Examples of how the FAR is affected by the signal-
to-noise ratio and the background-clutter statistics are given.
An analysis of how algorithm speed varies with the number of
spectral bands and the number of training samples is provided.
The analysis offers some insight into selecting the appropriate
anomaly detector for different situations.
Data Overview: We compare the detectors using images

taken from the wide-area airborne mine detection (WAAMD)
and hyperspectral digital imagery collection experiment
(HYDICE) datasets. The WAAMD imagery is provided by

the Night Vision Electronic Systems Directorate (NVESD).
The compass sensor, providing 256 bands in the visible/near-
infrared/shortwave-infrared (VIS/NIR/SWIR) part of the spec-
trum (400–2350 nm), was used to image the minefields. For the
images used in this study, the sensor was flown at an altitude
of 1000 and 2000 ft with a ground sample distance (GSD) of
approximately 4 and 8 in, respectively. The images contain two
types of mines of which the sizes are approximately 2 × 2
pixels.

The HYDICE sensor was used to acquire the Forest Radiance
II data collect. The sensor provides 210 spectral bands in the
VIS/NIR/SWIR wavelengths with approximately 1-m spatial
resolution. We focus on two images that contain the targets
from detection experiments 2, 3, and 4. There are over 20 target
vehicles in the scenes, including many that are partially hidden
along the tree lines. There are a handful of additional “transient”
nonmilitary vehicles in the images that are not marked as
ground truth but used in the evaluation.
Preprocessing: The detection algorithms are evaluated on

both multispectral and hyperspectral versions of the imagery.
For hyperspectral data, the only preprocessing step involved
manually removing the water and CO2 absorption bands. The
number of remaining bands is 145 for the WAAMD data
and 133 for the HYDICE imagery. To generate multispectral
data, an additional step was taken to reduce the total number
of bands to seven by averaging adjacent spectral bands. The
spectrum was divided into seven regions where the averaging
was performed; the regions correspond to red, green, blue, two
NIR, and two SWIR regions.

For all of the detectors, a hollow window is used to esti-
mate the local background model. The window dimensions are
determined by the largest expected target size in the scene,
which can be determined by the pixel resolution of the data.
A hollow window is used to avoid incorporating target pixels in
the estimation of the background statistics. For the RX detector,
a mean vector and a covariance matrix are estimated for each
pixel from the pixels in the hollow window. For the SVDD
detectors, the samples from the background window are used
to train the SVDD classifier at each pixel. The dimensions of
the window are the same for all detectors. However, a larger
window is used for hyperspectral data, since more training
samples are required to estimate the covariance matrix for the
RX algorithm. The actual window sizes used in the experiments
are given below.
Performance Evaluation: The detectors are evaluated by

comparing their ROC curves using groundtruthed imagery. The
locations of the target pixels are represented by rectangular
boxes. To generate the ROC curves, multiple thresholds are
used for the RX, SVDD(y), and the SVDDN (y) test statistics.
After applying a threshold, the detected pixels are clustered
via a connected components algorithm; each cluster is counted
as one detection or false alarm. If any part of the cluster
falls within the target box, it is considered to be a detection,
otherwise, it is a false alarm. In addition, detections arising from
bad lines in the image are removed manually.

In Figs. 4 –7, ROC curves are provided to evaluate the ability
of the algorithms to detect mines using the WAAMD data. A
total of 44 mines were placed in a highly cluttered dirt field
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Fig. 4. ROC curve comparing SVDD and RX detectors on WAAMD imagery
using seven bands. The 1400 × 256 image contains 44 live mines in a dirt field
and was taken at 1000-ft altitude.

Fig. 5. ROC curve comparing SVDD and RX detectors on WAAMD imagery
using 145 bands. The 1400 × 256 image contains 44 live mines in a dirt field
and was taken at 1000-ft altitude.

resulting in a nonhomogeneous background. The mine field
was imaged with the compass sensor at altitudes of 1000 and
2000 ft, with a GSD of 4 and 8 in, respectively. The size
of the 1000 and 2000-ft altitude images are 1400 × 256 and
1200 × 256 pixels, respectively. For multispectral processing,
the dimensions of the inner and outer regions for the hollow
background window are 7 × 7 and 13 × 13, respectively. For
hyperspectral, the dimensions of the inner and outer regions
for the hollow background window are 7 × 7 and 15 × 15,
respectively.

The ROC curves comparing the detectors on the 1000-ft
altitude image are shown in Figs. 4 and 5. In the multispectral
example of Fig. 4, the SVDD detectors clearly outperform
the RX algorithm throughout the curve. For 100% detection,
the SVDD detectors reduce the FAR by a factor of five. In

Fig. 6. ROC curve comparing SVDD and RX detectors on WAAMD imagery
using seven bands. The 1200 × 256 image contains 44 live mines in a dirt field
and was taken at 2000-ft altitude.

Fig. 7. ROC curve comparing SVDD and RX detectors on WAAMD imagery
using 145 bands. The 1200 × 256 image contains 44 live mines in a dirt field
and was taken at 2000-ft altitude.

the hyperspectral case (Fig. 5), the SVDD detectors generate
approximately the same FAR as with the multispectral data
(nearly 0.015 FA/m2). However, the FAR of RX detector
nearly doubles when processing the hyperspectral data. In the
hyperspectral representation of the image, the FAR of the
SVDD detectors is nearly an order of magnitude less than
the RX algorithm. One explanation for the performance dif-
ference is the distribution of the background spectra. With
a 4-in GSD, the rocks and variations in the dirt field are
more pronounced, which makes the background highly clut-
tered and nonhomogeneous. Hence, the Gaussian assumption
of the RX detector results in a high FAR. The SVDD is
better able to model the non-Gaussian and possibly multi-
modal support of the background pixels and reduce the number
false alarms.
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Fig. 8. ROC curve comparing SVDD and RX detectors on HYDICE imagery
using seven bands. The 1280 × 320 image contains vehicles that are on roads
and are partially camouflaged near the tree lines.

From the curves in Figs. 6 and 7, similar results are
observed for the image at 2000-ft altitude. Processing the
multispectral data, the SVDD detectors outperform the RX
detector throughout the ROC curve. For 100% detection, they
generate half of the false alarms of the RX. When analyzing
hyperspectral data, the ROC curves for the SVDD detectors
remain consistent, yielding an FAR of 0.01 FA/m2 for 100%
detection. For this image, the SVDD reduces the FAR by a
factor of nearly 2.5 instead of 10. One possible explanation
for the difference is that the background for the higher altitude
image is more homogeneous and, therefore, does not violate
the unimodal assumption of the RX algorithm. It is also
instructive to examine the signal-to-interference-noise ratio
(SINR) for the targets in the two images. The SINR for
each target is computed by using the target spectrum and
its covariance matrix estimated from a local neighborhood
of pixels. For the 1000-ft image, the range of SINR values
is between 23 and 28 dB, for the multispectral data, and
20 to 26 dB for the hyperspectral data. For the 2000-ft image,
the SINR ranges between 26 and 29 dB for both multi- and
hyperspectral versions of the image. These numbers suggest
that for lower SINR levels, the SVDD detectors offer significant
improvement over the RX algorithm. As the SINR increases,
the performance gain between the algorithms appears to lessen.

The algorithms are also evaluated using the Forest Radiance
II dataset to detect vehicles in various degrees of concealment.
The HYDICE sensor was used to image vehicles on dirt roads in
a heavily forested region at 1-m GSD. The background consists
of foliage, grass, and roads, and is smoothly varying and ho-
mogeneous. The size of the image used in this study is 1280 ×
320 pixels. For multispectral processing, the dimensions of the
inner and outer regions for the hollow background window
are 10 × 10 and 13 × 13, respectively. For the hyperspectral,
the dimensions of the inner and outer regions for the hollow
background window are 10 × 10 and 17 × 17, respectively.

Fig. 9. ROC curve comparing SVDD and RX detectors on HYDICE imagery
using 133 bands. The 1280 × 320 image contains vehicles that are on roads and
are partially camouflaged near the tree lines.

The ROC curves in Figs. 8 and 9 show that all of the
detectors work equally well in the low false-alarm region. In
this area of the curve, the vehicles are predominantly in the
open, so they are easier to detect. Using the hyperspectral
data (Fig. 9), there is a clear separation in the ability of the
RX and SVDD algorithms to detect targets partially occluded
along the tree lines. Since the local background of these targets
contains multiple types of terrain, a multimodal representation
for the background is required. In such cases, the SVDD is
able to compute a more robust detection threshold than the
RX detector. Furthermore, the SINR values for the targets in
the multispectral image are above 30 dB. In the hyperspectral
image, the SINR ranges from 27 to 33 dB. At such high
signal-to-noise ratios, the targets are well separated from the
background. Therefore, detectors, such as the RX that uses
linear decision boundaries, perform similarly to nonlinear
detectors, such as the SVDD (as seen in Fig. 8).

We summarize the results with two observations. First, the
SVDD detectors are particularly useful for detecting low SINR
targets. The spectra for these targets may not be linearly sep-
arable from the background, therefore, a nonlinear decision
boundary is required. Second, the SVDD detectors work well
with both multispectral and hyperspectral data. They are able
to incorporate the extra information provided by the addition
spectral bands to reduce the number of false alarms for 100%
detection. In contrast, the performance of the RX detector
appears to be sensitive to the number of bands. Among the
reasons for the difference are: 1) the Gaussian assumption of the
RX may be less valid for higher dimensional data, as explained
in [14] and 2) robust estimation of the covariance matrix is more
difficult as the number of bands increases.
Computational Complexity: The ROC curves in Figs. 4–9

illustrate the increase in detection performance offered by the
SVDD approach. In addition to reducing the FAR, anomaly
detectors should also be computationally efficient in order to
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Fig. 10. Illustration of how the computational complexity of the RX and
SVDD anomaly detectors varies with the number of spectral bands and the
number of training samples.

process a datacube in near real time. Thus, we consider the
computational complexity of the RX and SVDD algorithms.

The two critical factors that impact the speed of the detectors
are the number of spectral bands and the number of pixels in
the hollow window used to estimate the background model. For
the RX detector, it has been shown [13] that its computational
complexity is linear with respect to the number of pixels used
to estimate the background statistics. Since it needs to estimate
and invert a B × B covariance matrix (where B is the number
of spectral bands), the number of floating-point operations per
second for the RX detector is approximately quadratic with
respect to the number of bands [13].

For the SVDD, the converse is true. By avoiding the need to
invert large covariance matrices, the complexity of the SVDD
increases linearly with the number of bands, as only dot prod-
ucts need to be computed. However, the speed of the SVDD

detectors scales with the training-set size [17]. They require the
inversion of an N × N kernel matrix, where N is the number
of background pixels used to train the classifier at each pixel.
Hence, their complexity is exponential with respect to the size
of the background window.

In Fig. 10, the processing times for both algorithms as a
function of the number of spectral bands and number of training
samples are shown. The algorithms are implemented in C++
on a 2.8-GHz Pentium machine, and the code has not been
fully optimized. We measured the CPU time required to process
a 256 × 100 pixel image. Fig. 10(a) shows that for a fixed
number of training samples (144 local-background pixels),
the processing time for the SVDD increases linearly with the
number of spectral bands, while the RX increases quadratically.
In Fig. 10(b), it can be seen that the converse is true. For a fixed
number of bands (60 in this example), the SVDD increases
quadratically with the number of training samples, while the
RX increases linearly.

V. CONCLUSION

We note that other algorithms, such as the mixture of
Gaussian anomaly detector and the subspace RX (SSRX),
produce similar reductions in the FAR. However, the proposed
SVDD approach for anomaly detection has several key
differences.

1) It is nonparametric and has the ability to model non-
Gaussian background clutter.

2) It can model nonhomogeneous backgrounds using mul-
timodal distributions without making any prior assump-
tions (i.e., number of modes).

3) It avoids the need to invert large covariance matrices
when processing hyperspectral data.

We have also used a geometric interpretation of the SVDD
to derive normalized metric that is appropriate for anomaly
detection in spectral imagery. ROC curves that compare the
performance of the RX and the proposed detector show a
marked reduction in the number of false alarms when using the
SVDD. Further analysis of the background clutter and SINR
for the targets to explain the differences in performance is also
provided.
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