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ABSTRACT

As compared to classical distribution-independent bounds
based on the VC dimension, recent data-dependent bounds
based on Rademacher complexity yield tighter upper bounds
that may offer practical utility for model selection, as
suggested by several investigations. We present an ap-
proach for kernel machine learning and generalization per-
formance assessment that integrates concepts from prior
work on Rademacher-type data-dependent generalization
bounds and learning based on the optimization of quasi-
convex losses. Our main contribution focuses on the direct
estimation of the Rademacher penalty in order to obtain
a tighter generalization bound. Specifically we define the
optimization task for the case of learning with the ramp
loss and show that direct estimation of the Rademacher
penalty can be accomplished by solving a series of quadratic
programming problems.

1. INTRODUCTION

When learning a classifier from data, our goal is to identify
a function that provides good generalization performance
on future examples drawn from the same random process
that generated the training examples. Ideally we would
like an approach that allows us to use the entire training
set for learning and generalization performance assessment.
The method would yield a classifier from the specified
hypothesis class along with a rigorous, nontrivial bound on
the generalization performance.

As compared to classical distribution-independent bo-
unds based on the VC dimension, recent data-dependent
bounds based on Rademacher complexity [1] yield tighter
upper bounds that may offer practical utility for model
selection, as suggested by several investigations [2, 3,
4, 5]. Furthermore they offer the potential to generate
nontrivial upper bounds to assess classifier performance in
an absolute sense which is beneficial in certain applications.
To date these bounds have been mainly applied to fairly
restricted learning problems where explicit training error

minimization is possible [2, 3, 4]. [5] introduces a method
that supports joint learning and feature selection for linear
models through the direct optimization of a Rademacher-
type bound.

In this paper, we present an approach for kernel machine
learning and generalization performance assessment that
integrates concepts from prior work on Rademacher-type
data-dependent generalization bounds and learning based
on the optimization of quasiconvex losses. Our main contri-
bution focuses on the direct estimation of the Rademacher
penalty [4] in order to obtain a tighter generalization bound.
Specifically we define the optimization task for the case of
learning with the ramp loss and show that direct estimation
of the Rademacher penalty can be accomplished by solving
a series of quadratic programming problems.

2. THE LEARNING TASK

We will focus on the task of learning a binary classifier
from a labeled training sample S = {(xi, yi) | i ∈
{1, ..., n}, xi ∈ Rm, yi ∈ {±1}} that is generated from an
independent, identically distributed (IID) random process.
Let φ(h(x), y) be the loss function of interest. The true
risk L(h) for a classifier h is L(h) = Eφ(h(x), y). Given
a hypothesis class H = {h}, the classifier ĥ is selected
from H that minimizes the empirical estimate Ln(h) =
1
n

∑n
i=1 φ(h(xi), yi) of the risk over the training data. This

induction principle is known as empirical risk minimization
(ERM).

In the limit of infinite training data, we desire the
empirical risk to converge to the true risk uniformly across
the hypothesis class. Furthermore, we desire the deviation
between the empirical risk and the true risk to be reason-
ably small for a finite sample so that we have confidence
in the generalization performance of the resulting classi-
fier. We will examine data-dependent uniform deviation
bounds that place a bound on the maximum deviation
between the empirical and true risk over the hypothesis
class suph∈H (L(h)− Ln(h)). Given L(ĥ) ≤ Ln(ĥ) +



suph∈H (L(h)− Ln(h)), controlling the maximum devia-
tion constrains the upper bound on the true risk.

3. CONCENTRATION

The approach we will review to bounding the deviation
between the empirical and true risk relies on the idea
of concentration of a random variable. A concentrated
random variable is one which is very likely to assume
values close to its expectation. A result applied repeatedly
is McDiarmid’s inequality which allows one to bound the
probability that a function of independent variables deviates
from its expectation greater than a specified level. Specif-
ically, let x1, x2, . . . , xn be independent random variables
taking values in a set A. Assume g : An → R satisfies

sup
X1,...,Xn,X̂i∈A

|g(X1,...,Xn)−g(X1,...,X̂i,Xi+1,...,Xn)|≤ci (1)

for 1 ≤ i ≤ n.
Then for all ε > 0,

P(g(x1,...,xn)−Eg(x1,...,xn)≥ε)≤exp

„
−2ε2Pn
i=1 c

2
i

«
(2)

and

P(Eg(x1,...,xn)−g(x1,...,xn)≥ε)≤exp

„
−2ε2Pn
i=1 c

2
i

«
(3)

[6].
Consider the maximum deviation between the empirical

and true risk once again

sup
h∈H

(L(h)− Ln(h)) =

sup
h∈H

(
Eφ(yh(x))− 1

n

n∑
i=1

φ(yih(xi))

)
. (4)

Let us define zi = φ(yih(xi)) and

g(z1, ..., zn) = sup
h∈H

(
Ez1 −

1
n

n∑
i=1

zi

)
. (5)

In order for this function of the training sample to be con-
centrated, the maximum deviation in zi must be bounded,
either due to a constraint on φ or h. Let us assume 0 ≤ zi ≤
B which implies ci = B

n . If (2) holds with probability at
most δ, then we find with probability at least 1− δ [7],

sup
h∈H

(L(h)− Ln(h)) ≤

E sup
h∈H

(L(h)− Ln(h)) +B

√
− log δ

2n
. (6)

4. SYMMETRIZATION

The next objective is to bound the expectation of the
deviation. This is achieved through the introduction of
a ghost sample S′ of size n from the same underlying
distribution. The expected value of the maximum deviation
between the true risk and the empirical risk is then bounded
by the expected value of the maximum deviation between
the empirical risks on the two samples S and S′ through the
application of Jensen’s inequality yielding [7]

E sup
h∈H

(L(h)− Ln(h))

≤ ESS′ sup
h∈H

(
1
n

n∑
i=1

φ(y′ih(x′i))− φ(yih(xi))

)
. (7)

At this point, a series of independent and identically dis-
tributed (IID) Rademacher random variables {σi ∈ {±1} :
∀ i ∈ {1, . . . , n}} with uniform distributions are introduced
to equation 7. These variables represent the introduction of
random exchanges of examples between the two samples.
This ultimately yields the following bound [7].

E sup
h∈H

(L(h)− Ln(h))

≤ ESS′σ sup
h∈H

1
n

n∑
i=1

σi [φ(y′ih(x′i))− φ(yih(xi))]

≤ R(φ ◦ F) = ESσ sup
h∈H

2
n

n∑
i=1

σiφ(yih(xi)) (8)

The Rademacher complexity R(φ ◦ F), where F =
{yh(x) : ∀ h ∈ H}, provides a measure of the richness
of the hypothesis class H in terms of the expected value
of the maximum deviation achievable in the empirical risks
over random partitions of realizations of the training set. A
realization of the Rademacher random variables partitions a
training set into two approximately equal-sized subsamples
with high probability. Naturally if the hypothesis class is
very general, there is increased risk of overfitting, which
can manifest itself in terms of a significant deviation in
performance across the two subsamples. Our aim is to
identify a hypothesis class that allows us to achieve an
acceptably low risk without excessive complexity. The
Rademacher complexity is an appealing measure because
it allows for a completely data-dependent assessment of
generalization performance.

5. DATA-DEPENDENT GENERALIZATION
PERFORMANCE ASSESSMENT

With the results introduced so far, we can state the following
bound on the generalization performance of the classifier.



With probability at least 1− δ,

L(h) ≤ Ln(h) +R(φ ◦ F) +B

√
− log δ

2n
. (9)

This bound is still unappealing due to the expectation over
the sample and the Rademacher random variables in the
Rademacher complexity term. Thankfully we can avoid
this complication by appealing once again to concentration
and McDiarmid’s inequality. We examine two bounds that
enable different paths towards a computable bound. Their
respective roles will be made clear in the next section.

The empirical Rademacher complexity is defined as

Rn(φ ◦ F) = Eσ sup
h∈H

2
n

n∑
i=1

σiφ(yih(xi)), (10)

where zi = φ(yih(xi)) and

g(z1, ..., zn) = Eσ sup
h∈H

(
2
n

n∑
i=1

σizi

)
. (11)

Rn(φ◦F) varies by at most 2B
n since 0 ≤ zi ≤ B; therefore

ci = 2B
n . If (3) holds with probability at most δ, then with

probability at least 1− δ,

R(φ ◦ F) ≤ Rn(φ ◦ F) + 2B

√
− log δ

2n
. (12)

Similarly, the Rademacher penalty is defined as

Rn(φ ◦ F | σ) = sup
h∈H

2
n

n∑
i=1

σiφ(yih(xi)), (13)

where zi = σiφ(yih(xi)) and

g(z1, ..., zn) = sup
h∈H

(
2
n

n∑
i=1

zi

)
.

Rn(φ ◦ F | σ) varies by at most 4B
n since −B ≤ zi ≤ B;

therefore ci = 4B
n . If (3) holds with probability at most δ,

then with probability at least 1− δ,

R(φ ◦ F) ≤ Rn(φ ◦ F | σ) + 4B

√
− log δ

2n
. (14)

We can now assert that if (9) and (12) both hold with
probability at least 1− δ

2 , then through the union bound

L(h) ≤ Ln(h) +Rn(φ ◦ F) + 3B

√
log 2

δ

2n
(15)

holds with probability at least 1 − δ. Similarly if (9) and
(14) both hold with probability at least 1− δ

2 , then

L(h) ≤ Ln(h) +Rn(φ ◦ F | σ) + 5B

√
log 2

δ

2n
(16)

holds with probability at least 1− δ. This bound holds for a
single realization of the sample and the Rademacher random
variables.

6. BOUNDING THE EMPIRICAL RADEMACHER
COMPLEXITY

In scenarios where it is computationally intractable to di-
rectly compute the Rademacher complexity term in (15), we
can still construct a data-dependent generalization bound
from (15) by bounding the empirical Rademacher complex-
ity. It can be shown that for a bounded loss φ with Lipschitz
coefficient Lφ, the true risk is bounded by

L(h|φ) ≤ Ln(h|φ) + 2LφRn(F) + 3B

√
log 2

δ

2n
(17)

with probability at least 1 − δ. The remaining task is to
bound Rn(F).

At this point, we will assume that the hypothesis class is
H = {h(x) = wTΦ(x) : ∀ ||w|| ≤W}, a set of generalized
linear classifiers with weight vectors of bounded norm. This
leads to the following upper bound

Rn(F) ≤ 2W
n

(
n∑
i=1

K(xi, xi)

) 1
2

(18)

where the kernel function K(xi, xj) = Φ(xi)TΦ(xj) [8].
Substituting this result into (17) yields the bound

L(h|φ) ≤ Ln(h|φ)+
4LφW
n

(
n∑
i=1

K(xi, xi)

) 1
2

+3B

√
log 2

δ

2n
(19)

that holds with probability at least 1− δ.
It is worth pausing for a moment to reflect on the

implications of this bound. First note that this bound
allows one to make statements about the generalization
performance of any classifier h ∈ H with respect to loss φ,
even if h is chosen through the minimization of a different
loss φ′. Clearly if we are optimizing with respect to φ′, the
empirical risk term Ln(h|φ) will not be minimized in the
bound; yet we can still define a bound.

In the derivation of the bound, two constraints were
introduced on the loss φ; namely that φ has a finite Lipschitz
coefficient Lφ and φ(yh(x)) is bounded. For simplicity, let
us consider bounded losses where 0 ≤ φ(x) ≤ B. For
example, if we desire a bound on the classification error
rate, the standard approach is to specify a loss that upper
bounds the classification error loss Iyh(x)<0 yet satisfies the
Lipschitz continuity constraint. One such loss is the ramp
loss (or clipped hinge loss) where

φr|s(x) =

 1 if x < 0
1− x

s if 0 ≤ x ≤ s
0 otherwise

(20)

with Lipschitz coefficientLφr|s = 1
s [8]. Using this loss, we

can specify the following bound on the classification error



rate

L(h|Ix<0) ≤ L(h|φr|s)

≤ Ln(h|φr|s) +
4W
sn

(
n∑
i=1

K(xi, xi)

) 1
2

+ 3

√
log 2

δ

2n
(21)

with probability at least 1− δ.
While the bound introduced in (21) appears favorable,

there is still room for improvement. Many practical learning
algorithms involve the optimization of a convex loss that is
by definition not bounded. Therefore, as highlighted earlier,
the empirical risk term in the bound will not be minimized
for a classifier derived from optimization of a surrogate loss.
Ideally we would like to minimize this term through direct
optimization of the bounded loss.

The more significant source of slack in (21) comes from
the upper bound on the empirical Rademacher complexity.
The derivation leading to (18) employs two bounds for
the hypothesis class of norm-constrained generalized linear
models to address the expectation over the Rademacher
random variables and the supremum over the hypothesis
class. This introduces the linear dependence on the weight
vector norm bound W which is particularly concerning.
As the difficulty of the classification problem increases,
necessitating a larger weight vector norm, the bound can
grow arbitrarily large and become dominated by this linear
dependence.

Instead of bounding the empirical Rademacher com-
plexity, we will now explore an alternative approach that
involves directly computing the Rademacher penalty for a
specific realization of the Rademacher random variables. In
this scenario, we will shift our attention from bound (15) to
(16) as our starting point.

7. A TIGHTER BOUND THROUGH
OPTIMIZATION

The data-dependent generalization bound based on the
Rademacher penalty offers the potential to pose learning
algorithms with tighter bounds that are directly evaluated
through optimization. To achieve this result, we are trading
convexity in the loss to obtain a tighter bound on general-
ization performance. In this section, we examine the details
of the optimization problems associated with a bounded,
quasiconvex loss.

For a bounded loss φ that upper bounds the classification
error, we can state the following upper bound on the true
classification error

L(h|Ix<0) ≤ L(h|φ)

≤ Ln(h|φ) +Rn(φ ◦ F | σ) + 5B

√
log 2

δ

2n
(22)

with probability at least 1 − δ using (16). During learning,
the objective is to identify a classifier that minimizes the
bound by searching over a series of nested hypothesis
classes H1 ⊂ H2 ⊂ . . . ⊂ Hm. As mentioned earlier,
our interest is in learning kernel machines of the form
h(x) =

∑n
i=1 αiK(xi, x) where K(x, y) = Φ(x)TΦ(y).

The nested hypothesis classes are increasingly larger sets
of kernel machines with weight vectors satisfying a norm
bound. Let kij = K(xi, xj), ki = [k1i, k2i, . . . , kni]T

and K = [k1, k2, . . . , kn] and H = {h : αTKα ≤
W̄}. The hypothesis classes are therefore indexed by their
corresponding weight vector norm bounds W̄1 ≤ W̄2 ≤
. . . ≤ W̄m.

For a given hypothesis class with norm bound W̄ ,
we must address two optimization problems to select a
classifier and obtain a generalization bound. The first step
is to estimate the classifier parameters α∗ minimizing the
empirical risk

α∗(W̄ ) = arg min
α

αTKα ≤ W̄

Ln(h|φ) =
1
n

n∑
i=1

φ(yikT
iα).

(23)
The second step is to estimate the Rademacher penalty asso-
ciated with the hypothesis class for the specific realization
of the Rademacher random variables.

Rn(φ ◦ F | σ, W̄ ) = max
α

αTKα ≤ W̄ 2
n

∑
σi=1

φ(yikT
iα)− 2

n

∑
σj=−1

φ(yjkT
jα)

 . (24)

With these parameters identified, the resulting generaliza-
tion bound for the classifier h∗ is

L(h|Ix<0) ≤ 1
n

n∑
i=1

φ(yikT
iα∗(W̄ ))

+Rn(φ ◦ F | σ, W̄ ) + 5B

√
log 2

δ

2n
(25)

with probability at least 1− δ.
Since we are interested in a subset of the solutions

along the trajectory parameterized by W̄ , we address a
corresponding set of unconstrained optimization problems
to identify the classifiers and estimate the Rademacher
penalties. The unconstrained minimization problem to solve
for empirical risk minimization is

α∗(λ) = arg min
α

(
1
n

n∑
i=1

φ(yikT
iα) + λαTKα

)
. (26)

For a given λ, there exists a corresponding W̄ (λ) =
α∗(λ)TKα∗(λ) for which λ is the resulting Lagrange mul-
tiplier in the constrained optimization problem in (23). This



implies that λ provides an alternate parameterization of the
trajectory of solutions that we can trace without the burden
of constraints.

The unconstrained maximization problem to solve in
order to compute the Rademacher penalties for the resulting
classifiers is

α′∗(β) = arg max
α

(
2
n

∑
σi=1

φ(yikT
iα)

− 2
n

∑
σj=−1

φ(yjkT
jα)− βαTKα

 . (27)

As with the unconstrained minimization problem, β rep-
resents the Lagrange multiplier for the corresponding con-
strained optimization problem in (24) with

W̄ (β) = α′∗(β)TKα′∗(β).

By solving the maximization problem for a series of values
{βi}, we obtain samples {

(
W̄ (βi), Rn(φ ◦ F | σ, W̄ (βi))

)
}

on the Rademacher penalty curve as a function of W̄
supporting estimation of the needed Rademacher penalties
for {W̄ (λi)} through interpolation.

8. QUASICONVEX OPTIMIZATION VIA CCCP

For both empirical risk minimization and computation of
the Rademacher penalty, the core task is to minimize a
quasiconvex function g that can be expressed as a sum
of a convex function gv and a concave function gc. The
approach we will employ to minimize functions of this
form is the ConCave-Convex Procedure (CCCP) [9]. CCCP
identifies a local minimum by solving a sequence of con-
vex minimization problems where the concave function is
majorized by a first-order approximation about the current
parameters. After each convex minimization problem is
solved, the first-order approximation is recomputed and the
process continues until a minimum is reached.

For empirical risk minimization, the goal is to minimize

min
α

1
n

n∑
i=1

φv(yikT
iα) + φc(yikT

iα) + λαTKα (28)

where φv and φc are the convex and concave components
of φ respectively. Beginning with α0 = 0, the convex
surrogate

min
αk+1

1
n

n∑
i=1

φv(yikT
iαk+1)+

∇αφc(yikT
iα)|Tα=αk

αk+1 + λαT
k+1Kαk+1. (29)

is minimized during each iteration, yielding the parameters
αk+1 from the convex approximation centered about the
parameters αk from the previous iteration.

We proceed similarly with computing the Rademacher
penalty. The objective in this case is to maximize

max
α

2
n

∑
σi=1

φ(yikT
iα)

− 2
n

∑
σj=−1

φ(yjkT
jα)− βαTKα. (30)

Grouping convex and concave terms yields

max
α

gv(α)︷ ︸︸ ︷
2
n

∑
σi=1

φv(yikT
iα)− 2

n

∑
σj=−1

φc(yjkT
jα) +

2
n

∑
σi=1

φc(yikT
iα)− 2

n

∑
σj=−1

φv(yjkT
jα)− βαTKα

︸ ︷︷ ︸
gc(α)

(31)

= max
α

gv(α) + gc(α). (32)

Beginning with α0 = 0, the concave surrogate

max
αk+1

gc(αk+1) +∇αgv(α)|Tα=αk
αk+1 (33)

is maximized during each iteration, yielding the parameters
αk+1 from the concave approximation centered about the
parameters αk from the previous iteration.

We now consider the specific problems induced when
φ(x) is a generalized ramp loss

φ(x) =

 1− γx if x < 0
1− x if 0 ≤ x ≤ 1
0 otherwise

(34)

where 0 < γ ≤ 1. In [10], scalable learning of kernel ma-
chines optimized for the ramp loss was addressed through
the application of CCCP as outlined above. Therefore we
focus on the problem of computing the Rademacher penalty
in this scenario.

The generalized ramp loss can be decomposed into a
difference of shifted hinge losses

φ(x) = φv(x) + φc(x)
= [1− x]+ − [−(1− γ)x]+. (35)

For γ > 0, the generalized ramp loss is strictly quasiconvex
which guarantees a unique solution [11]. By choosing a
small value for γ initially or annealing toward 0, we can
capitalize on the strict quasiconvexity of the loss.

Substituting in for φc and φv , we obtain the following
for the concave and convex components

gc(α) = − 2
n

∑
i,σi=1

[−(1− γ)yikT
iα]+

− 2
n

∑
j,σj=−1

[1− yjkT
jα]+ − βαTKα (36)



gv(α) =
2
n

∑
i,σi=1

[1− yikT
iα]+

+
2
n

∑
j,σj=−1

[−(1− γ)yjkT
jα]+. (37)

We will define the subderivative of the hinge loss [·]+ as

∂

∂x
[x]+ =

{
1 if x > 0
0 otherwise . (38)

The subgradient ∇αgv(α) is then

∇αgv(α) = − 2
n

∑
i,σi=1

yikip(α)i

− 2
n

∑
j,σj=−1

(1− γ)yjkjq(α, γ)j (39)

where p(α)i = IyikT
iα<1 and q(α, γ)i = I(1−γ)yikT

iα<0.
By introducing slack variables for the hinge losses, we
obtain the following equivalent quadratic program for (33)

min
α,ε

βαTKα−∇αgv(α)|Tα=α0
α+ 2

n

∑
i εi

subject to (1− γ)yikT
iα ≥ −εi, σi = 1

yik
T
iα ≥ 1− εi, σi = −1
εi ≥ 0 ∀ i ∈ {1,...,n}.

We omit the derivation of the dual optimization problem
due to space constraints. Given the range of scalable
approaches for solving quadratic programs, we expect that
direct computation of the Rademacher penalty is feasible
with runtime complexity similar to that of the learning with
the ramp loss.

9. DISCUSSION AND CONCLUSION

With the machinery introduced to compute the Rademacher
penalty directly, let us consider what claims can be made
about the relative performance of the bounds (15) and
(16). Consider the case where the ramp loss is employed
along with normalized kernels where K(x, x) = 1. If the
Rademacher penalty-based bound (16) outperforms (15),

Rn(φ ◦ F | σ) ≤ 4W
s
√
n
−

√
2 log 2

δ

n
. (40)

Since 0 ≤ Rn(φ◦F | σ) ≤ 2n+
n where n+ is the number of

positive realizations of the Rademacher random variables,

we can identify two transition points. WhenW ≤ s
√

log 2
δ ,

the above condition is violated and the Rademacher penalty-

based bound underperforms. When W ≥ s
√

log 2
δ + sn+

2
√
n

,
the bound outperforms. In the intervening range, no claims
can be made.

These transition points suggest the empirical Rade-
macher complexity-based bound (15) may outperform the
Rademacher penalty-based bound (16) in small sample
scenarios while (16) may excel in challenging tasks where
more functional complexity is required. One may find
also that even with direct computation of the Rademacher
penalty, this global measure of complexity is still insuffi-
cient, motivating the need for local Rademacher averages
[12] that reflect the fact that classifiers are chosen from a
small set with low empirical risk. Yet as earlier work on
decision tree pruning [4] and feature selection [5] suggests,
the use of Rademacher-based bounds such as (15) and (16)
provides practical performance gains. Our future work will
be focused on conducting extensive computational studies
to understand the tradeoffs and benefits provided by direct
estimation of the Rademacher penalty for kernel machine
learning.
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